PRIME ASSOCIATOR-DEPENDENT RINGS WITH IDEMPOTENT(1)

BY NICHOLAS J. STERLING

1. **Introduction.** Associator-dependent rings as a class were defined by Kleinfeld [2]. They are rings R which satisfy the following identities.

(1)
$$\alpha_1(x, y, z) + \alpha_2(y, z, x) + \alpha_3(z, x, y) + \alpha_4(x, z, y) + \alpha_5(z, y, x) + \alpha_6(y, x, z) = 0$$
 for fixed α_1 in some field of scalars and x, y, z in R where the associator is defined as $(x, y, z) = (xy)z - x(yz)$.

(2)
$$(x, x, x) = 0.$$

A linearization of (2) yields (1) with $\alpha_i = 1$ for i = 1 - 6. Since (2) alone is not strong enough to yield a structure theory for R we assume that (2) does not imply (1).

This class of rings includes, among others, the right and left alternative rings, Lie-admissible rings, rings of type (γ, δ) , flexible rings, and antiflexible rings.

Kleinfeld, Kosier, Osborn and Rodabaugh [3] showed that an associator-dependent ring R must satisfy one of the following three identities.

(3)
$$\alpha(y, x, x) - (\alpha + 1)(x, y, x) + (x, x, y) = 0,$$

(4)
$$(y, x, x) = (x, y, x),$$

(5)
$$(x, y, z) + (y, z, x) + (z, x, y) = 0.$$

We note that any ring satisfying (4) is anti-isomorphic to one satisfying (3) where $\alpha = 0$. It is our purpose in this paper to show that if R is a prime associator-dependent ring satisfying (3) and having an idempotent $e \neq 0$, 1 then when the characteristic of R is prime to 6, R is alternative unless $\alpha = -1$, 1, $-\frac{1}{2}$, -2. It then follows immediately, from a result of Slater's [6], that R can be embedded in a Cayley-Dickson algebra.

An example to show that this result is false when $\alpha = -1$ can be found in [4]. The residual cases where $\alpha = 1$, $-\frac{1}{2}$, -2 correspond, respectively, to flexible, left alternative, and right alternative rings. With the assumption of Lie-admissibility we have shown in a paper to be published elsewhere that if R is a prime right or left alternative ring with an idempotent $e \neq 0$, 1 and characteristic prime to 6 then

Received by the editors August 20, 1966.

⁽¹⁾ This paper was written under Contract 1520.1023, United States Army Research Office. It is a part of the author's doctoral dissertation written under the supervision of Professor Erwin Kleinfeld at Syracuse University.

R is associative and a prime, flexible, power-associative ring R with an idempotent $e \neq 0$, 1 and a Peirce decomposition relative to e with the same restriction on characteristic is associative.

It is worth noting that an arbitrary primitive ring is prime [5]. Hence, by defining a suitable radical, the results of this paper could be extended to semisimple rings.

- 2. **Preliminary results. Construction of ideals.** Let R be an associator-dependent ring satisfying (3) where $\alpha \neq -1$, 1, $-\frac{1}{2}$, -2. Furthermore, assume that R has an idempotent $e \neq 0$, 1. If the characteristic of R is prime to 6 the following results hold in R [3].
- 1. R has the Peirce decomposition $R = R_{11} + R_{10} + R_{01} + R_{00}$ relative to e where x_{ij} belongs to R_{ij} if and only if ex = ix and xe = jx where i, j = 0, 1. Moreover, the sum of the submodules R_{ij} is direct.
 - 2. The following relations hold for products of elements from R when $\alpha \neq 0$.

(6)
$$R_{ij}^2 R_{kp} \subseteq \delta_{jk} R_{ip} \text{ where } i, j, k, p = 0, 1 \text{ and } \delta_{jk} \text{ is the Kronecker delta, except}$$
$$R_{ij}^2 \subseteq R_{ji}, x_{ij}^2 = 0 \text{ where } i = 0, 1 \text{ and } j = 1 - i.$$

When $\alpha = 0$ all of the above relations hold except

(7)
$$R_{ii}R_{ij} \subseteq R_{ij} + R_{ij}, R_{ij}R_{ii} \subseteq R_{ji} \text{ and } (x_{ii}y_{ij} - y_{ij}x_{ii}) \text{ is in } R_{ij}.$$

- 3. When $\alpha = 0$, $K = R_{10}R_{11} + R_{01}R_{00}$ is a trivial ideal of R.
- 4. The following relations exist for associators of R when $\alpha \neq 0$. When $\alpha = 0$, the same relations hold so long as R has no trivial ideals. Let σ be an arbitrary permutation of the arguments in an associator. Then when $i \neq j$,

(8)
$$(\sigma x_{ii}, \sigma y_{ij}, \sigma z_{ji}) = 0,$$

$$(\sigma x_{ii}, \sigma y_{ij}, \sigma z_{ii}) = 0,$$

$$(\sigma x_{ii}, \sigma y_{ji}, \sigma z_{ii}) = 0,$$

$$(\sigma x_{ii}, \sigma y_{ij}, \sigma z_{jj}) = 0,$$

$$(\sigma x_{ii}, \sigma y_{ij}, \sigma z_{jj}) = 0,$$

 $(\sigma x, \sigma y, \sigma z) = \operatorname{sgn} \sigma(x, y, z)$ for x, y, z in R unless each of x, y, z has a nonzero component in the same R_{ii} submodule.

We now prove

LEMMA 1. Let R satisfy (2) and (3) where $\alpha = 0$. Then if R is a prime ring elements from R satisfy (6) and (8).

Proof. Since R is prime it can contain no trivial ideals. Hence K=0. But then from (7), $x_{ii}y_{ij}$ belongs to R_{ij} and (6) and (8) follow.

For the remainder of this paper we assume that R is a prime ring. Clearly, from (8), R is alternative if and only if R_{11} and R_{00} are alternative. We will prove that, in fact, these subrings must be associative.

It is immediate from (8) that the following identities hold for all x, y, z in R except when x, y, z all have nonzero components in the same R_{ii} submodule.

(9)
$$(xy+yx)z = x(yz)+y(xz),$$
$$z(xy+yx) = (zx)y+(zy)x,$$
$$(zx)y+(yx)z = z(xy)+y(xz).$$

The Teichmüller identity, true for an arbitrary ring R, will be of use to us. We state it below.

(10)
$$0 = F(x, y, z, w) = (xy, z, w) - (x, yz, w) + (x, y, zw) - x(y, z, w) - (x, y, z)w$$
.

The next two lemmas have been proven for alternative rings [1]. We will show that they are still true under our more general hypotheses.

LEMMA 2. If B_i is an ideal of R_{ii} , then $D_i = B_i + R_{ji}B_i + B_iR_{ij} + (R_{ji}B_i)R_{ij}$ is an ideal of R, where i = 0, 1 and j = 1 - i.

Proof. First, $R_{ii}D_i \subseteq R_{ii}B_i + R_{ii}(B_iR_{ij})$ from (6). However, $R_{ii}B_i \subseteq B_i$ and, from (8), $R_{ii}(B_iR_{ij}) \subseteq (R_{ii}B_i)R_{ij} \subseteq B_iR_{ij}$. Hence, $R_{ii}D_i \subseteq D_i$. Similarly, $D_iR_{ii} \subseteq D_i$.

Next, $R_{ji}D_i \subseteq R_{ji}B_i + R_{ji}(R_{ji}B_i) + R_{ji}(B_iR_{ij})$ from (6). But, $R_{ji}(B_iR_{ij}) \subseteq (R_{ji}B_i)R_{ij}$ from (8). Also, from (9), $R_{ji}(R_{ji}B_i) \subseteq (R_{ji}^2)B_i + (B_iR_{ji})R_{ji} + B_i(R_{ji}^2)$. Since $(R_{ji}^2)B_i = (B_iR_{ji})R_{ji} = 0$, by (6), we conclude that $R_{ji}(R_{ji}B_i) \subseteq B_i(R_{ji}^2) \subseteq B_iR_{ij}$. Thus, $R_{ji}D_i \subseteq D_i$. A similar argument shows that $D_iR_{ij} \subseteq D_i$.

Now, $R_{ij}D_i \subseteq R_{ij}(R_{ji}B_i) + R_{ij}(B_iR_{ij}) + R_{ij}[(R_{ji}B_i)R_{ij}]$ from (6). But, $R_{ij}(R_{ji}B_i)$ $\subseteq (R_{ij}R_{ji})B_i \subseteq B_i$ from (8). Since $R_{ij}(B_iR_{ij}) \subseteq (R_{ij}B_i)R_{ij} + (R_{ij}^2)B_i + R_{ij}(R_{ij}B_i)$, from (9), and $(R_{ij}B_i)R_{ij} = R_{ij}(R_{ij}B_i) = 0$, from (6), we have $R_{ij}(B_iR_{ij}) \subseteq (R_{ij}^2)B_i \subseteq R_{ji}B_i$. Finally, by (9), $R_{ij}[(R_{ji}B_i)R_{ij}] \subseteq [R_{ij}(R_{ji}B_i)]R_{ij} + (R_{ij}^2)(R_{ji}B_i) + R_{ij}[R_{ij}(R_{ji}B_i)]$. However, $R_{ij}[R_{ij}(R_{ji}B_i)] = 0$ and $[R_{ij}(R_{ji}B_i)]R_{ij} \subseteq [(R_{ij}R_{ji})B_i]R_{ij} \subseteq B_iR_{ij}$ from (6) and (8). Furthermore, $R_{ij}^2(R_{ji}B_i) \subseteq R_{ji}(R_{ji}B_i) \subseteq D_i$ from (6) and the fact that we have already shown that $R_{ji}D_i \subseteq D_i$. Hence, $R_{ij}D_i \subseteq D_i$. A similar argument shows that $D_iR_{ji} \subseteq D_i$.

Finally, we consider $R_{jj}D_i \subseteq R_{jj}(R_{ji}B_i) + R_{jj}[(R_{ji}B_i)R_{ij}]$ from (6). However, $R_{jj}(R_{ji}B_i) \subseteq (R_{jj}R_{ji})B_i \subseteq D_i$ and $R_{jj}[(R_{ji}B_i)R_{ij}] \subseteq [(R_{jj}R_{ji})B_i]R_{ij} \subseteq D_i$ from (8). Thus, $R_{ij}D_i \subseteq D_i$. Similarly, $D_iR_{ij} \subseteq D_i$.

We conclude that RD_i and D_iR are contained in D_i and that D_i is an ideal of R.

LEMMA 3. If $R_{10}^2 R_{10} = R_{01}^2 R_{01} = R_{10} R_{10}^2 = R_{01} R_{01}^2 = 0$, then $H = R_{10}^2 + R_{01}^2$ is an ideal of R.

Proof. First, consider $R_{ij}^2 R \subseteq R_{ij}^2 R_{ii} + R_{ij}^2 R_{ij} + R_{ij}^2 R_{ji} + R_{ij}^2 R_{jj}$. Now, $R_{ij}^2 R_{ij} = 0$ by hypothesis. Also, $R_{ij}^2 R_{jj} = 0$ and $R_{ij}^2 R_{ji} \subseteq R_{ji}^2$ from (6). Since

$$R_{ij}^2 R_{ii} \subseteq R_{ij}(R_{ij}R_{ii}) + R_{ij}(R_{ii}R_{ij}) + (R_{ij}R_{ii})R_{ij}$$

from (9), and $R_{ij}(R_{ij}R_{ii}) = (R_{ij}R_{ii})R_{ij} = 0$ by (8), we conclude that $R_{ij}^2R_{ii} \subseteq R_{ij}^2$. Therefore $HR \subseteq H$. A similar argument yields $RH \subseteq H$. Thus H is an ideal of R.

We now proceed with other lemmas preliminary to our main result.

LEMMA 4. $L = R_{ij}R_{ji}$ is an ideal in R_{ii} in the nucleus of R_{ii} where i = 0, 1 and j = 1 - i.

Proof. It is clear from (6) and (8) that L is an ideal of R_{ii} . We will show that L is in the left nucleus of R and note that a similar argument places L in the middle and right nuclei of R.

Let $x_{ij} \in R_{ii}$, $y_{ii} \in R_{ii}$ and z_{ii} , $w_{ii} \in R_{ii}$. Then

$$(x_{ij}y_{ji}, z_{ii}, w_{ii}) = [(x_{ij}y_{ji})z_{ii}]w_{ii} - (x_{ij}y_{ji})(z_{ii}w_{ii}) = 0$$

by repeated applications of (8). Hence, L is in the left nucleus of R_{ii} .

LEMMA 5. $R_{ii}^2 R_{ii}$ and $R_{ij} R_{ij}^2$ are ideals in the center of R_{ii} when i = 0, 1 and j = 1 - i.

Proof. It is immediate from Lemma 4 that $R_{ji}^2R_{ji}$ and $R_{ij}R_{ij}^2$ are in the nucleus of R_{ii} . Also, $(R_{ji}^2R_{ji})R_{ii} \subseteq R_{ji}^2(R_{ji}R_{ii}) \subseteq R_{ji}^2R_{ji}$ and $R_{ii}(R_{ij}R_{ij}^2) \subseteq (R_{ii}R_{ij})R_{ij}^2 \subseteq R_{ij}R_{ij}^2$ from (6) and (8). Thus, $R_{ji}^2R_{ji}$ is a right ideal and $R_{ij}R_{ij}^2$ a left ideal, respectively, of R_{ii} . Therefore, to prove that they are both ideals in the center of R_{ii} , it suffices to show that they commute with each element in R_{ii} .

Before proceeding, we recall from (6) that $x_{ij}^2 = 0$ for $i \neq j$. Replacing x_{ij} by $x_{ij} + y_{ij}$ we obtain

$$(11) x_{ij}y_{ij} + y_{ij}x_{ij} = 0.$$

Now, let x_{ji} , y_{ji} , z_{ji} belong to R_{ji} and w_{ii} to R_{ii} . Then

$$[(x_{ii}y_{ii})z_{ii}]w_{ii} = (x_{ii}y_{ii})(z_{ii}w_{ii})$$

from (8). But,

$$(x_n y_n)(z_n w_n) + [x_n(z_n w_n)]y_n = x_n[y_n(z_n w_n)] + x_n[(z_n w_n)y_n] = 0$$

from (9) and (11). Hence,

$$(x_{ji}y_{ji})(z_{ji}w_{ii}) = -[x_{ji}(z_{ji}w_{ii})]y_{ji} = (x_{ji}, z_{ji}, w_{ii})y_{ji} = -(w_{ii}, z_{ji}, x_{ji})y_{ji}$$

from (6) and (8), and so,

$$[(x_{ii}y_{ii})z_{ii}]w_{ii} = -(w_{ii}, z_{ii}, x_{ii})y_{ii}.$$

However, from (10), we have

$$0 = F(w_{ii}, z_{ji}, x_{ji}, y_{ji}) = (w_{ii}z_{ji}, x_{ji}, y_{ji}) - (w_{ii}, z_{ji}x_{ji}, y_{ji}) + (w_{ii}, z_{ji}, x_{ji}, y_{ji}) - w_{ii}(z_{ii}, x_{ii}, y_{ii}) - (w_{ii}, z_{ii}, x_{ii})y_{ji}.$$

Whence, from (6) and (8), we get

(13)
$$w_{ii}(z_{ii}, x_{ii}, y_{ii}) = -(w_{ii}, z_{ii}, x_{ii})y_{ii}.$$

Combining (12) and (13), we obtain,

$$[(x_{ii}y_{ii})z_{ii}]w_{ii} = w_{ii}(z_{ii}, x_{ii}, y_{ii}) = w_{ii}(x_{ii}, y_{ii}, z_{ii}) = w_{ii}[(x_{ii}y_{ii})z_{ii}]$$

from (6) and (8). We conclude that elements from $R_{ji}^2 R_{ji}$ commute with elements from R_{ii} . A similar proof shows that elements from $R_{ij}R_{ij}^2$ also commute with elements from R_{ii} .

The next two lemmas deal with arbitrary prime rings.

LEMMA 6. Let R be a nonassociative prime ring. Then R can contain no nuclear ideals.

Proof. Let B be an ideal in the nucleus of R. Let b belong to B and x, y, z to R. From (10) we obtain

$$0 = F(b, x, y, z) = (bx, y, z) - (b, xy, z) + (b, x, yz) - b(x, y, z) - (b, x, y)z$$
$$= -b(x, y, z).$$

Further, b[(x, y, z)w] = [b(x, y, z)]w = 0 where w belongs to R. Hence,

$$B(R, R, R) = B[(R, R, R)R] = 0.$$

However, finite sums of elements of the form (R, R, R) and (R, R, R)R form an ideal in an arbitrary ring. Since R is prime, B must be zero unless R is associative.

LEMMA 7. Let R be an arbitrary prime ring. Then the set of annihilators of a non-zero element in the center of R is zero.

Proof. Let $c \neq 0$ belong to the center of R and suppose x belongs to R and xc = cx = 0. Then c(xR) = (xc)R = 0 and c(Rx) = (Rx)c = R(xc) = 0. Therefore the annihilator of c is an ideal of R, call it C. It is clear that C annihilates the ideal generated by C. Since C is assumed nonzero, we conclude that C and C is a sum of C in C is a sum of C is a sum of C in C is a sum of C is a sum

3. Main section. The next lemma is crucial to the proof of our main result.

LEMMA 8. Let C_i and B_i be ideals in R_{ii} such that $B_iC_i = C_iB_i = 0$. Then

$$D_i = B_i + R_{ii}B_i + B_iR_{ij} + (R_{ii}B_i)R_{ij}$$

and

$$F_i = C_i + R_{ii}C_i + C_iR_{ij} + (R_{ii}C_i)R_{ij}$$

are ideals of R and $D_iF_i=F_iD_i=0$.

Proof. From Lemma 4, F_i and D_i are ideals of R. We have left to show that they annihilate one another. First, from (6) we have $D_iC_i \subseteq B_iC_i + (R_jB_i)C_i$. However, $B_iC_i = 0$ by hypothesis and $(R_{ji}B_i)C_i \subseteq R_{ji}(B_iC_i) = 0$ from (8). A similar argument applies to C_iD_i , F_iB_i , and B_iF_i and we can conclude that

(14)
$$D_i C_i = C_i D_i = F_i B_i = B_i F_i = 0.$$

Next, $D_i(R_{ji}C_i) \subseteq (R_{ji}B_i)(R_{ji}C_i) + (B_iR_{ij})(R_{ji}C_i) + [(R_{ji}B_i)R_{ij}](R_{ji}C_i)$ from (6). From (9), $(R_{ji}B_i)(R_{ji}C_i) \subseteq R_{ji}[B_i(R_{ji}C_i)] + B_i[R_{ji}(R_{ji}C_i)] + (B_iR_{ji})(R_{ji}C_i)$. However, $(B_iR_{ji})(R_{ji}C_i) = R_{ji}[B_i(R_{ji}C_i)] = 0$ from (6) and $B_i[R_{ji}(R_{ji}C_i)] = 0$ from (14). Hence, $(R_{ii}B_i)(R_{ii}C_i) = 0$. Finally, $(B_iR_{ij})(R_{ji}C_i) \subseteq B_i[R_{ij}(R_{ji}C_i)] = 0$ and $[(R_{ii}B_i)R_{ij}](R_{ji}C_i)$ $\subseteq \{[(R_{ji}B_i)R_{ij}]R_{ji}\}C_i = 0$ from (8) and (14). A similar argument applies to $F_i(R_{ji}B_i)$ and we have,

(15)
$$D_i(R_{ii}C_i) = F_i(R_{ii}B_i) = 0.$$

Now, $(R_{ii}C_i)D_i \subseteq (R_{ii}C_i)(B_iR_{ij})$ from (6), (14) and (15). But,

$$(R_{ii}C_i)(B_iR_{ij}) \subseteq R_{ii}[C_i(B_iR_{ij})] = 0$$

from (8) and (15). Hence, as a similar argument applies to $(R_{ii}B_i)F_i$, we obtain

(16)
$$(R_{ii}C_i)D_i = (R_{ii}B_i)F_i = 0.$$

Next, $D_i(C_iR_{ij})\subseteq (B_iR_{ij})(C_iR_{ij})$ from (6), (14) and (15). However,

$$(B_iR_{ij})(C_iR_{ij}) \subseteq B_i[R_{ij}(C_iR_{ij})] + R_{ij}[B_i(C_iR_{ij})] + (R_{ij}B_i)(C_iR_{ij})$$

from (9). Since $(R_{ij}B_i)(C_iR_{ij})=0$ from (6) and $B_i[R_{ij}(C_iR_{ij})]=R_{ij}[B_i(C_iR_{ij})]=0$ from (14), we conclude that $(B_iR_{ij})(C_iR_{ij})=0$. A similar argument applies to $F_i(B_iR_{ij})$. Hence

(17)
$$D_i(C_iR_{ij}) = F_i(B_iR_{ij}) = 0.$$

We have $(C_i R_{ii}) D_i \subseteq (C_i R_{ii}) [(R_{ii} B_i) R_{ii}]$ from (14), (15) and (17). However,

$$(C_i R_{ii})[(R_{ii}B_i)R_{ii}] \subseteq C_i \{R_{ii}[(R_{ii}B_i)R_{ii}]\} = 0$$

from (8) and (14). A similar argument applies for $(B_i R_{ij}) F_i$ and we obtain

(18)
$$(C_i R_{ij}) D_i = (B_i R_{ij}) F_i = 0.$$

Finally, we consider $[(R_{ji}C_i)R_{ij}]D_i$ and $D_i[(R_{ji}C_i)R_{ij}]$. From (14)–(18) it is clear that we need only consider $[(R_{ii}C_i)R_{ij}][(R_{ii}B_i)R_{ij}]$. But,

$$[(R_{ii}C_i)R_{ij}][(R_{ii}B_i)R_{ij}] \subseteq (R_{ii}C_i)\{R_{ij}[(R_{ii}B_i)R_{ij}]\} = 0$$

from (8) and (17). Hence,

$$[(R_{ii}C_i)R_{ij}]D_i = D_i[(R_{ii}C_i)R_{ij}] = 0.$$

Similarly,

$$[(R_{ii}B_i)R_{ij}]F_i = F_i[(R_{ii}B_i)R_{ij}] = 0.$$

We conclude that $D_i F_i = F_i D_i = 0$.

COROLLARY. If R is a prime ring then the subrings R_{ii} , where i=0, 1 are also prime rings.

Proof. Let C_i and B_i be ideals of R_{ii} such that $C_iB_i = B_iC_i = 0$. Then D_i and F_i , constructed as in Lemma 2, are ideals of R such that $D_iF_i = F_iD_i = 0$. Since R is prime we conclude that either D_i or F_i is zero. Hence, either B_i or C_i is zero and R_{ii} is a prime ring.

We now proceed to analyze the R_{ii} spaces. Our attention is directed toward the four subspaces $R_{ij}R_{ij}^2$ and $R_{ji}^2R_{ji}$ where i=0, 1 and j=1-i.

First, suppose $R_{10}^2 R_{10} = R_{01}^2 R_{01} = R_{10} R_{10}^2 = R_{01} R_{01}^2 = 0$. Then from Lemma 3 $H = R_{10}^2 + R_{01}^2$ is an ideal of R.

LEMMA 9. Let $R_{ij}R_{ij}^2 = R_{ji}^2R_{ji} = 0$ where i = 0, 1 and j = 1 - i. Then $H = R_{10}^2 + R_{01}^2 = 0$.

Proof. We have $R_{ij}^2 R_{ij}^2 = 0$ for $i \neq j$ from (6) and the hypothesis. Also,

$$R_{ij}^2 R_{ij}^2 \subseteq R_{ij}(R_{ij}R_{ij}^2) + R_{ij}(R_{ij}^2 R_{ij}) + (R_{ij}R_{ij}^2)R_{ij}$$

from (9). Since all elements on the right of this inclusion relation vanish, $R_{ij}^2 R_{ij}^2 = 0$. Thus, H is a trivial ideal of R. Since R is a prime ring, it follows that H = 0.

LEMMA 10. Let $H = R_{10}^2 + R_{01}^2 = 0$. Then $B = R_{10}R_{01} + R_{10} + R_{01}R_{10}$ is an ideal in the nucleus of R.

Proof. From (6) and (8) it is evident that B is an ideal of R.

Recall, from (8), that all associators containing at least one argument from R_{ij} , where $i \neq j$, alternate. Thus, to prove that R_{ij} is in the nucleus of R, it suffices to show that R_{ij} is in the left nucleus of R.

To this end, consider associators of the form (R_{ij}, R_{kp}, R_{mn}) where k, p, m, n = 0, 1. From (8), it is evident that unless two of the arguments are from the R_{ij} or the R_{ji} space the associator vanishes. But, $(R_{ij}, R_{ij}, R_{mn}) = (R_{ij}, R_{ji}, R_{ji}) = 0$ regardless of the value m assumes, from (6) and the fact that H = 0. Hence, R_{ij} is in the nucleus of R.

From Lemma 4, $R_{ij}R_{ji}$, where i=0, 1 and j=1-i, is in the nucleus of R_{ii} . Since R_{ij} , R_{ji} are in the nucleus of R and associators of the form $(\sigma R_{ii}, \sigma R_{jj}, \sigma R_{jj}) = 0$ from (8), where σ is an arbitrary permutation of the three arguments, it follows that $R_{ij}R_{ji}$ is in the nucleus of R.

COROLLARY. B=0 if R is not associative.

Proof. Immediate from Lemmas 6 and 10.

LEMMA 11. If $R_{ij}^2 R_{ij} = R_{ji} R_{ji}^2 = 0$ for i = 0, 1 and j = 1 - i then R is associative.

Proof. From Lemma 10, Corollary, we obtain $R = R_{11} + R_{00}$. Since R_{11} and R_{00} are orthogonal subrings of R we conclude that they are, in fact, orthogonal ideals of R. Since $e \neq 0$ belongs to R_{11} , we get $R_{00} = 0$. But then $R = R_{11}$ and e becomes the identity for R, contrary to hypothesis. Hence, R must be associative.

It follows that, unless R is associative, at least one of the subspaces $R_{10}^2R_{10}$, $R_{01}^2R_{01}$, $R_{10}R_{01}^2$, $R_{01}R_{01}^2$ must not vanish. We will show that, under this condition, both R_{11} and R_{00} must be associative and R must be alternative.

Assume, without loss of generality, that $R_{01}R_{01}^2 \neq 0$. From Lemma 5, $R_{01}R_{01}^2$ is a nonzero ideal in the center of R_{00} . Hence, from Lemma 6, R_{00} must be associative.

Recall, from Lemma 4, that $R_{10}R_{01}$ is an ideal in the nucleus of R_{11} . Unless R_{11} is also associative, $R_{10}R_{01}=0$. Under the assumption that $R_{10}R_{01}=0$, we examine elements of the form $x_{01}y_{10}$ belonging to $R_{01}R_{10}$. From (8), we have

$$(x_{01}y_{10})^2 = [(x_{01}y_{10})x_{01}]y_{10}, \text{ and } (x_{01}, y_{10}, x_{01}) = 0.$$

Expanding this associator, we obtain $(x_{01}y_{10})x_{01} - x_{01}(y_{10}x_{01})$. However, $x_{01}(y_{10}x_{01}) = 0$, and we obtain

$$(x_{01}y_{10})x_{01}=0=(x_{01}y_{10})^2.$$

In particular, $[x_{01}(y_{01}z_{01})]^2=0$ for x_{01} , y_{01} , z_{01} in R_{01} . From Lemmas 5 and 7, it follows that $x_{01}(y_{01}z_{01})=0$ and so, $R_{01}R_{01}^2=0$. This is contrary to our assumption. The contradiction arises from the assumption that $R_{10}R_{01}=0$. Thus, $R_{10}R_{01}\neq 0$ and, hence, R_{11} must be associative.

We have proven

THEOREM. Let R be a prime associator-dependent ring satisfying (3) where $\alpha \neq -1, 1, -\frac{1}{2}, -2$ and the characteristic of R is prime to 6. If R has an idempotent $e \neq 0, 1$ then R is alternative.

BIBLIOGRAPHY

- 1. A. A. Albert, On simple alternative rings, Canad. J. Math. 4 (1952), 129-135.
- 2. E. Kleinfeld, Associator-dependent rings, Arch. Math. 13 (1962), 203-212.
- 3. E. Kleinfeld, F. Kosier, J. M. Osborn and D. Rodabaugh, *The structure of associator-dependent rings*, Trans. Amer. Math. Soc. 110 (1964), 473-483.
- 4. F. Kosier, On a class of non-associative algebras, Trans. Amer. Math. Soc. 102 (1962), 299-318.
 - 5. R. L. San Soucie, Weakly standard rings, Amer. J. Math. 79 (1957), 80-86.
- 6. M. B. Slater, Weakly prime alternative rings, Abstract 65T-166, Notices Amer. Math. Soc. 12 (1965), 367-368.

SYRACUSE UNIVERSITY,
SYRACUSE, NEW YORK
STATE UNIVERSITY OF NEW YORK,
BINGHAMPTON, NEW YORK